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Transition to deterministic chaos in a periodically driven quantum system
and breaking of the time-reversal symmetry

U. Schwengelbeck and F. H. M. Faisal
Fakultät für Physik, Universita¨t Bielefeld, Postfach 100 131, D-33501 Bielefeld, Germany

~Received 16 February 1996; revised manuscript received 14 January 1997!

The phenomenon of transition from regular to chaotic dynamics in a periodically driven quantum system is
demonstrated. The associated quantum Lyapunov numbers are determined analytically. A numerical experi-
ment is made to test the nature of time evolution predicted by the theory. In contrast to the evolution in the
regular domain, the passage to deterministic quantum chaos is found to break the time-reversal symmetry of
the quantum dynamics, whenever the latter cannot be followed with infinite precision.
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Chaotic behavior in classical Hamiltonian systems, wh
local instabilities lead to an extremely sensitive depende
on the initial condition, has led to growing attention on t
question of similar behavior in quantum Hamiltonian sy
tems~e.g.,@1#!. In order to make possible a rigorous chara
terization of irregular~chaotic! dynamics in both the sys
tems, a unified definition of Lyapunov characteris
numbers and Kolmogorov-Sinai~KS! entropy, based on the
Hamilton-Jacobi formulation of the quantum mechanics,
been given recently@2#. An application of this definition to
the quantum standard map has confirmed~in terms of van-
ishing Lyapunov exponents! the quantal suppression o
chaos in this system@2# that was predicted earlier@3# and has
been observed recently@4#. It has been shown@5# that a
quantum version of Arnold’s cat map@6#, proposed by
Weigert @7#, provides a definite example of determinist
quantum chaos in terms of a positive Lyapunov exponen

The aim of this work is to report on the phenomenon
transition from regular to chaotic quantum dynamics, acco
panied by a breaking of the time-reversal symmetry of
wave function, whenever the dynamics cannot be follow
with infinite precision. Before proceeding further, we sh
briefly outline the definition of quantum Lyapunov exp
nents@2#, using the Hamilton-Jacobi formulation of quantu
mechanics, and then introduce the system of inter
namely, a generalized version of the quantum cat map
Weigert @7#. The wave function of a particle of chargeq in
an electromagnetic field is governed by the Schro¨dinger
equation

i\
]

]t
c5Ĥc, ~1!

where the Hamiltonian is

Ĥ52
\2

2m S ¹2
iq

\c
AD 21qf1V; ~2!

A andf are the vector and scalar potential, respectively,
V is an external potential. Substitution of the wave functi
in the form c5ReiS/\ in Eq. ~1! yields the generalized
Hamilton-Jacobi equation
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]S/]t1mv2/21qf1V1Q50 ~3!

and the continuity equation~with the densityP5R2)

]P/]t1¹•~Pv!50, ~4!

where v5(¹S2q/cA)/m denotes the velocity field and
Q52\2(¹2R)/2mR, appearing in Eq.~3!, is the so-called
quantum potential. The associated quantum trajectorie
the particle are then governed by the equation of motion@8#

mẋ~ t !5¹S~x,t !2~q/c!A~x,t ! ~5!

or, equivalently, by the quantum Newton equation@8#

mẍ~ t !5qE1~q/c!v3B2¹~V1Q!. ~6!

It is noted that the present formulation of quantum mech
ics, which goes back to de Broglie and was completed
Bohm @8#, is fully consistent with the predictions of the con
ventional quantum mechanics. This is ensured by the
that the density distributionP$x(t)%(x,t) of the trajectories of
the quantum ensemble,$x(t)%, that evolves from an initial
distribution of positions, given byP$x(0)%(x,t0), is equivalent
to the Born probability densityuc(x,t)u2. A consequence of
this formulation is the existence of a correspondingnon-
negativequantum phase space distribution function, given

f ~p,x,t !5P~x,t !d„p2¹S~x,t !…. ~7!

It is important to note that this formulation of the quantu
theory provides also an unambiguous classical limit of
quantum dynamics. From Eq.~6! it can be seen that the
condition for this limit is given by the vanishing of the qua
tum force:2¹Q5\2¹@¹2R/(2mR)#50, which is ensured
if ~i! \2/m→0 or ~ii ! ¹(R21¹2R)→0. Under these circum-
stances the quantum Newton equation~6! goes over directly
to the corresponding classical one. This allows one to giv
unified definition of the Lyapunov exponentsl in terms of
the Euclidean distanced(t)5Adp(t)21dx(t)2 in phase
space for both classical and quantum dynamics@2#:

l5 lim
t→`

d~ t0!→0

t21ln@d~ t !/d~ t0!#. ~8!
6260 © 1997 The American Physical Society
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This describes the asymptotic rate of exponential diverge
of two neighboring trajectories, evolving from an initial di
tanced(t0)→0 in the phase space. Thus, chaotic dynam
associated with an extreme sensitivity to the initial conditio
is characterized byl.0, for both classical and quantum
dynamics. To investigate the transition from regular to c
otic dynamics, we consider a quantum system consisting
charged particle confined in a square of dimens
@0,L#3@0,L#, L51, that is subjected to a periodic electr
magnetic field, given by the vector potential

A~x,t !52~cm/q! Vxdt~ t !, ~9!

where dt(t)5( j52`
` d(t2 j t), t is the period length, and

x5(x,y)T (mod1). We define matrixV in Eq. ~9! via the
transformation matrix

M ~K !5eV5S 1 K

1 K11D , ~10!

where detM (K)51 ensures the corresponding map to
area preserving, and the system parmeterK is assumed to
vary on the real axis. The scalar fieldf may be chosen in
analogy with@7# to reduce the Hamiltonian~2! in the Schro¨-
dinger equation into

Ĥ52
\2

2m
¹22

i\

2
~¹•V x1x V•¹!dt~ t !. ~11!

It will be shown below that the parameterK, appearing in
Eq. ~10!, controls the nature of the evolution of the wa
function in time. In the special caseK51, our system re-
duces to the quantum realization of Arnold’s cat map@6#,
due to Weigert@7#, which has been shown@5# to exhibit
deterministic quantum chaos in terms of a positive Lyapun
exponentl. To be able to investigate the transition fro
regular to irregular quantum dynamics analytically, we co
sider below the so-called resonant case with a kick perio
length t5mL2/\p. In this case the free evolution operat
U0(t)5exp(i\t¹2/2m) returns the wave function at the en
of a period to its value at the beginning of the period. T
time evolution of the periodically kicked system is then o
tained by the repeated application of the evolution opera

Û~V!5exp@2~¹•Vx1x V•¹!/2# ~12!

on an initial statec0(x,t0). An algebraic calculation simila
to that in @7,5# shows that the wave function immediate
before the (n11)th kick, as well as immediately after th
nth kick, is given by

c~x,tn11
2 !5c~x,tn

1!5c0~M
2n x,t0

1!, ~13!

where the transformation matrix

@M ~K !#2n5SK11 2K

21 1 D n. ~14!

The quantum equation of the motion of the system is
tained from Eqs.~5! and ~9! to be

p~ t !5 ẋ~ t !5m21¹S~x,t !1Vxdt~ t !. ~15!
ce
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It can be seen from Eq.~13! that for all real initial states
c0(x,t0

1), the wave functionc(x,tn
6) remains real and henc

the gradient of the phase vanishes immediately before
after thenth kick for all n:

p~ tn
6!5¹S~x,tn

6!50. ~16!

Integration of the equation of motion~15! in the interval
tn

2<t<tn
1 yields

x~ t !5eV u~ t2nt!x~ tn
2! ~mod1!. ~17!

Thus, the position of a single quantum trajectory at the ti
immediately after thenth kick, tn

1 , is given by

x~ tn
1!5eV x~ tn

2!5eV x~ tn21
1 ! ~mod1!, ~18!

where the last equality follows from the free propagati
between two successive kicks under the resonance cond
mentioned above. Given an initial coordinatex(t0

1), repeated
application of Eq.~18! yields @with eV5M (K)#

x~ tn
1!5@M ~K !#n x~ t0

1! ~mod1!. ~19!

From Eq.~19!, the separation between two neighboring c
ordinates is given by

dx~ tn
1!5@M ~K !#n dx~ t0

1!; ~20!

the separation in canonical momenta in phase sp
dp(tn

1), vanishes at all timestn
1 in view of Eqs.~7! and~16!.

Thus, the Euclidean phase space distance reduce
d(tn

1)5udx(tn
1)u. The Lyapunov exponent, defined by E

~8!, then becomes

l5 lim
tn
1→`

udx~ t0
1

!u→0

1

tn
1 ln

udx~ tn
1!u

udx~ t0
1!u

5 lim
n→`

1

nt
lniM ~K !in, ~21!

where the last equality follows from Eq.~20! and i i stands
for the matrix norm. Thus, from the eigenvalues of the m
trix M (K), given by

FIG. 1. Dimensionless Lyapunov numberlt vs system param-
eterK, showing the domains of regular (lt50), 24<K<0, and
chaotic (lt.0), K,24 andK.0, dynamics.
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FIG. 2. Evolution of the wave function in a square of dimension@0,1#3@0,1#, starting with the ground state and propagating up to
25th period, then time reversing and propagating another 25 periods backward (n526, . . .,50). ~a! Regular case withK50, and~b! chaotic
case withK52. In case~a!, the wave function maintains time reversibility and returns to its initial state, whereas in case~b!, the
time-reversal symmetry is broken~cf. text!.
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2 D 221, ~22!

we finally obtain from~21! the quantum Lyapunov exponen

l5t21lnug~K !u, ~23!

whereug(K)u is the greater ofug1(K)u and ug2(K)u. It can
be seen from Eqs.~22! and ~23! that for 24<K<0, l is
zero, establishing that the dynamics of the system is reg
 ar

in this domain. For parameter valuesK,24 as well as
K.0, the quantum Lyapunov exponentl is positive defi-
nite, proving that the dynamics in these domains is rig
ously chaotic. This regular to chaotic transition as a funct
of K is depicted in Fig. 1. It can be seen from this figure th
the critical values of the parameters for this transition are
K50 andK524. One of the practical consequences of t
chaotic evolution is the long-time unpredictability of the d
namics. This fact can reflect itself in the breaking of t
time-reversal symmetry of the quantum evolution in the c
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otic region, whenever the latter cannot be followed with
finite precision. To test this prediction based on the anal
cal demonstration of deterministic chaos given above,
show below the results of numerical simulations of t
propagation of the wave function of the system at a seque
of kick periodsnt, starting with the unperturbed ground sta

c0~x,y,t0
1!52sin~px!sin~py!. ~24!

Figures 2~a! and 2~b! show the evolution of the wave func
tion during the first 25 kicks@the left-hand columns in~a!
and~b!, from above, downward#, as well as the time-reverse
evolution from the 25th period backward@the right-hand col-
umns in~a! and ~b!, from below, upward#. Figure 2~a! cor-
responds toK50, and therefore to the critical regular valu
of the quantum Lyapunov exponentl50. In this regular
domain one expects a stable evolution in time for both
forward and backward propagations. This is indeed wha
seen to be the case in this figure; not only does the forw
evolution remain regular in time, but also the time-revers
evolution after the 25th kick brings back the wavefunction
its initial state. Figure 2~b! corresponds to a value ofK52
that lies in the chaotic domain withl.0. It can be seen tha
not only does the wave function of the system become
ibly chaotic with time @left-hand column of Fig. 2~b!# but
also, on backward propagation from the 25th period, the s
tem fails to return to its initial state@right-hand column of
Fig. 2~b!#, revealing a breakdown of the time-reversal sy
metry in the chaotic region. The significance of this res
can be appreciated by an examination of the connection
tween the Lyapunov numberl with the notion of algorith-
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mic information, which are related, according to th
Alekseev-Brudno theorem@9# as l5 lim t→`I (t)/t, where
I (t) is the information necessary to record a stretch of
trajectory exactly in the interval of timet. In the long run, for
a positive definite value ofl, the need for information in-
creases boundlessly and the evolution cannot be follow
exactly either in the forward or backward direction of m
tion, resulting in a breaking of time-reversal symmet
Thus, the presence of quantum chaos provides an intri
mechanism for the origin of irreversibility in the realizatio
of quantum dynamics. The length of timetcrit5ncritt, over
which the evolution can be recorded~not just imagined! is
given by the Chirikov condition@1#, r5lutcritu/u ln(m)u<1,
where m is the accuracy of recording. One may estima
therefore that for an accuracym'10214 andlt.1.32, as in
the case of Fig. 2~b!, the critical time is aboutncrit'24 pe-
riods, which is essentially the same as seen in Fig. 2~b!.

To conclude, we have analyzed the regular to chao
transition in a periodically driven two-dimensional quantu
system, using a recently proposed quantum definition
Lyapunov exponent. The prediction of deterministic qua
tum chaos by the theory is tested in a numerical experim
it is shown that the time-reversal symmetry of the wa
function is broken by the onset of quantum chaos, whene
the evolution cannot be followed with infinite precision.
demonstrates that rigorous quantum chaos provides an in
sic mechanism towards quantum irreversibility, indepe
dently of the presence of any influence from outside the s
tem, such as that of ‘‘baths,’’ ‘‘environmental dephasing
or ‘‘measurements,’’ and ‘‘collapse’’ of the wave function
-
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