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Transition to deterministic chaos in a periodically driven quantum system
and breaking of the time-reversal symmetry
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The phenomenon of transition from regular to chaotic dynamics in a periodically driven quantum system is
demonstrated. The associated quantum Lyapunov numbers are determined analytically. A numerical experi-
ment is made to test the nature of time evolution predicted by the theory. In contrast to the evolution in the
regular domain, the passage to deterministic quantum chaos is found to break the time-reversal symmetry of
the quantum dynamics, whenever the latter cannot be followed with infinite precision.
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Chgotic bghavior in classical Hamiltonian_ §ystems, where 39S/ gt+mv3/2+qp+V+Q=0 3
local instabilities lead to an extremely sensitive dependence
on the initial condition, has led to growing attention on theand the continuity equatiofwith the densityP=R?)
guestion of similar behavior in qguantum Hamiltonian sys-
tems(e.g.,[1]). In order to make possible a rigorous charac- dP/dt+V-(Pv)=0, 4)
terization of irregular(chaotio dynamics in both the sys-
tems, a unified definition of Lyapunov characteristic
numbers and Kolmogorov-SinéKS) entropy, based on the
Hamilton-Jacobi formulation of the quantum mechanics, ha;
been given recently2]. An application of this definition to
the quantum standard map has confirnfiedterms of van- Doy _
ishing Lyapunov exponentsthe quantal suppression of MX(t)= VSOt = (a/e) A ®
chaos in this systef2] that was predicted earli¢8] and has  or, equivalently, by the quantum Newton equatf@h
been observed recently]. It has been showf5] that a
qguantum version of Arnold’'s cat maf6], proposed by mX(t)=qE+ (g/c)vxXB—-V(V+Q). (6)
Weigert [7], provides a definite example of deterministic )
quantum Chaos in terms Of a positive Lyapunov exponent' It IS nOt.ed that the present formulflitlon of quantum mechan-

The aim of this work is to report on the phenomenon ofics, which goes back to de Broglie and was completed by
transition from regular to chaotic quantum dynamics, accomBohm([8], is fully consistent with the predictions of the con-
panied by a breaking of the time-reversal symmetry of the/entional quantum mechanics. This is ensured by the fact
wave function, whenever the dynamics cannot be followedhat the density distributioR ,,(x,t) of the trajectories of
with infinite precision. Before proceeding further, we shallthe quantum ensembléx(t)}, that evolves from an initial
briefly outline the definition of quantum Lyapunov expo- distribution of positions, given by E(X,to)y is equivalent
nents[2], using the Hamilton-Jacobi formulation of quantum to the Born probability denSitW/(X,t){ . A consequence of
mechanics, and then introduce the system of interesthis formulation is the existence of a correspondimon-
namely, a generalized version of the quantum cat map ofegativequantum phase space distribution function, given by
Weigert[7]. The wave function of a particle of charggin
an electromagnetic field is governed by the Sdimger f(p.x.) =P(x,1) 8(p—VS(x,1)). (@)
equation

where v=(VS—q/cA)/m denotes the velocity field and
Q=—#4?(V?R)/2mR, appearing in Eq(3), is the so-called
guantum potential. The associated quantum trajectories of
The particle are then governed by the equation of mdi&jn

It is important to note that this formulation of the quantum
theory provides also an unambiguous classical limit of the
iﬁil/fzﬂl/f, (1) guantum dynamics. From Ed6) it can be seen that the
dt condition for this limit is given by the vanishing of the quan-
tum force: — VQ=#2V[V?R/(2mR)]=0, which is ensured
where the Hamiltonian is if (i) 2#2/m—0 or (i) V(R 'V?R)—0. Under these circum-
stances the quantum Newton equat{iéhgoes over directly
. 2 iq \? to the corresponding classical one. This allows one to give a
H=-— m(V— 7oA TaetV; (2)  unified definition of the Lyapunov exponentsin terms of
the Euclidean distancel(t)=/8p(t)?+ ox(t)? in phase

§hace for both classical and quantum dynarhiis

A and¢ are the vector and scalar potential, respectively, an

V is an external potential. Substitution of the wave function — -1

. A= lim t™n[d(t)/d(tg)]. 8
in the form y=Re&" in Eq. (1) yields the generalized e [A(t)/d(to)] ®
Hamilton-Jacobi equation d(tg)—0
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This describes the asymptotic rate of exponential divergence 3
of two neighboring trajectories, evolving from an initial dis-
tanced(ty) — 0 in the phase space. Thus, chaotic dynamics, 2
associated with an extreme sensitivity to the initial condition,
is characterized by\>0, for both classical and quantum
dynamics. To investigate the transition from regular to cha- ,‘E 1
otic dynamics, we consider a quantum system consisting of a
charged particle confined in a square of dimension 0-
[O,L]X[OL], L=1, that is subjected to a periodic electro-
magnetic field, given by the vector potential 1
= | | l T | |
A(x,t)=—(cm/q) Vx4.(1), (9) -8 -6 -4 -2 2 4 6 8

where 5T(t)=2f‘:_m5(t—jr), 7 is the period length, and

x=(x,y)" (mod1). We define matri%/ in Eq. (9) via the

transformation matrix FIG. 1. Dimensionless Lyapunov numbet vs system param-
eterK, showing the domains of regulak {=0), —4<K<0, and

(10) chaotic \ 7>0), K< —4 andK>0, dynamics.

1 K
M(K)=e"=
(K) (1 K+1 o
It can be seen from Eq13) that for all real initial states

where detM(K)=1 ensures the corresponding map to beyo(x,tg), the wave functions(x,t,) remains real and hence
area preserving, and the system parméteis assumed to the gradient of the phase vanishes immediately before and
vary on the real axis. The scalar fiell may be chosen in after thenth kick for all n:

analogy with[7] to reduce the Hamiltonia(®) in the Schre

dinger equation into p(t,)=VS(x,t,)=0. (16)
N h? , I Integration of the equation of motiofl5) in the interval
H:—%V —?(V-V X+xV-V)sé.(1). (11 t;$t$t; yields

It will be shown below that the parametit, appearing in x(t)y=e¥ ""x(t;)  (modd). 17)

Eqg. (10), controls the nature of the evolution of the wave
function in time. In the special cag€=1, our system re- Thus, the position of a single quantum trajectory at the time
duces to the quantum realization of Arold’s cat njapy  immediately after theath kick, t, , is given by
due to Weigert[7], which has been showfb] to exhibit
deterministic quantum chaos in terms of a positive Lyapunov X(ty)=e" x(t,)=e" x(t,_y) (modd), (18
exponent\. To be able to investigate the transition from ) )
regular to irregular quantum dynamics analytically, we con-Where the last equality follows from the free propagation
sider below the so-called resonant case with a kick period gpetween two successive kicks under the resonance condition
length r=mL2/% . In this case the free evolution operator mentioned above. Given an initial coordinatg; ), repeated
Uo(7) = exp(#7V42m) returns the wave function at the end application of Eq(18) yields[with €=M (K)]
of a period to its value at the beginning of the period. The . .
time evolution of the periodically kicked system is then ob- X(t;)=[M(K)]" x(tg)  (modl). (19
tained by the repeated application of the evolution operator ) ) )

From Eq.(19), the separation between two neighboring co-

O(V)=exd — (V-Vx+x V-V)/2] (12)  ordinates is given by

on an initial statayy(x,t,). An algebraic calculation similar SX(ty ) =[M(K)]" 8x(tg ); (20
to that in[7,5] shows that the wave function immediately . _ _
before the G+ 1)th kick, as well as immediately after the the separation in canonical momenta in phase space,

nth kick, is given by Sp(t,), vanishes at all times, in view of Egs.(7) and(16).
Thus, the Euclidean phase space distance reduces to
P(X, ) =Wt = (MM x,tg), (13 d(t))=]|dx(t,)]. The Lyapunov exponent, defined by Eq.

. ) (8), then becomes
where the transformation matrix
1 |ox(ty)l 1

+1 —K)” A= lim = lim

K - n
[M(K)]n:( 1 1 (14 . th |n|5x(tg)| nTln”M(K)“ , (21

tn — 0 n—e
|x(tg )| —0
The quantum equation of the motion of the system is ob-
tained from Eqgs(5) and(9) to be where the last equality follows from E¢O) and|| || stands
. for the matrix norm. Thus, from the eigenvalues of the ma-
p(t)=x(t)=m IVS(x,t)+Vx5(t). (15  trix M(K), given by
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FIG. 2. Evolution of the wave function in a square of dimendidyi]x[0,1], starting with the ground state and propagating up to the
25th period, then time reversing and propagating another 25 periods backwag®(. . .,50).(a) Regular case witl =0, and(b) chaotic
case withK=2. In case(a), the wave function maintains time reversibility and returns to its initial state, whereas in(lpasthe
time-reversal symmetry is brokenf. tex?.

in this domain. For parameter valués<—4 as well as
> -1, (22 K>0, the quantum Lyapunov exponextis positive defi-
nite, proving that the dynamics in these domains is rigor-
we finally obtain from(21) the quantum Lyapunov exponent ously chaotic. This regular to chaotic transition as a function
of K is depicted in Fig. 1. It can be seen from this figure that
A=7"n|y(K)|, (23)  the critical values of the parameters for this transition are at
) K=0 andK=—4. One of the practical consequences of the
where|y(K)| is the greater ofy. (K)| and|y_(K)|. Itcan  chaotic evolution is the long-time unpredictability of the dy-
be seen from Eqe22) and (23) that for —4<K<0, N is  namics. This fact can reflect itself in the breaking of the
zero, establishing that the dynamics of the system is regulafme-reversal symmetry of the quantum evolution in the cha-

K+2 K+2
= +

v+(K)=——=
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otic region, whenever the latter cannot be followed with in-mic information, which are related, according to the
finite precision. To test this prediction based on the analytiAlekseev-Brudno theoreni9] as A=lim,_.I(t)/t, where

cal demonstration of deterministic chaos given above, we(t) is the information necessary to record a stretch of the
show below the results of numerical simulations of thetrajectory exactly in the interval of time In the long run, for
propagation of the wave function of the system at a sequencg positive definite value ok, the need for information in-

of kick periodsn, starting with the unperturbed ground state ¢reases boundlessly and the evolution cannot be followed

Ay A . exactly either in the forward or backward direction of mo-
Yo(X.ytg) =2sin(mxjsin(my). (24) tion, resulting in a breaking of time-reversal symmetry.

Figures 2a) and 2b) show the evolution of the wave func- Thus, the presence of quantum chaos provides an intrinsic
tion during the first 25 kickgthe left-hand columns iria) mechanism for the origin of irreversibility in the realization
and(b), from above, downwardas well as the time-reversed of quantum dynamics. The length of tinig;=nc7, over
evolution from the 25th period backwafthe right-hand col-  which the evolution can be recordédot just imaginedl is
umns in(a) and (b), from below, upwardl Figure 2a) cor-  given by the Chirikov conditiof1], r=\|tgl/|In(w)|<1,
responds td& =0, and therefore to the critical regular value where n is the accuracy of recording. One may estimate
of the quantum Lyapunov exponent=0. In this regular therefore that for an accuragy~10 **and\7=1.32, as in
domain one expects a stable evolution in time for both thehe case of Fig. @), the critical time is abouh;~24 pe-
forward and backward propagations. This is indeed what isiods, which is essentially the same as seen in Fig). 2

seen to be the case in this figure; not only does the forward To conclude, we have analyzed the regular to chaotic
evolution remain regular in time, but also the time-reversedransition in a periodically driven two-dimensional guantum
evolution after the 25th kick brings back the wavefunction tosystem, using a recently proposed quantum definition of
its initial state. Figure () corresponds to a value &f=2 Lyapunov exponent. The prediction of deterministic quan-
that lies in the chaotic domain withi>0. It can be seen that tum chaos by the theory is tested in a numerical experiment:
not only does the wave function of the system become visit is shown that the time-reversal symmetry of the wave
ibly chaotic with time[left-hand column of Fig. @)] but  function is broken by the onset of quantum chaos, whenever
also, on backward propagation from the 25th period, the syshe evolution cannot be followed with infinite precision. It
tem fails to return to its initial statéright-hand column of demonstrates that rigorous quantum chaos provides an intrin-
Fig. 2b)], revealing a breakdown of the time-reversal sym-sic mechanism towards quantum irreversibility, indepen-
metry in the chaotic region. The significance of this resultdently of the presence of any influence from outside the sys-
can be appreciated by an examination of the connection béem, such as that of “baths,” “environmental dephasing,”
tween the Lyapunov number with the notion of algorith- or “measurements,” and “collapse” of the wave function.
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